Abstract
The present study proposes the combination of lean office and artificial intelligence to improve the quality and efficiency in the management of public hospitals in Peru. By combining Lean Office and Artificial Intelligence in hospital management, the aim is to improve both the efficiency and quality of the services provided. This involves identifying and eliminating inefficiencies in administrative and clinical processes, automating routine tasks, optimizing resources, and making better informed decisions through data analysis. The objective of this research is to optimize administrative and operational management by providing a better quality of service to the user. Through the elimination of waste, the automation of processes and data analysis, with the implementation of Lean Office and Artificial Intelligence (AI) in the management of public hospitals in Peru. This research will be carried out, with the aim of not only summarizing the existing research on the topic, but also to include an element of critical analysis, which is based on the PRISMA methodology, for the article was used, data collection and the analysis of case studies such as GOOGLE ACADEMIC, SCIELO, SPRINGER LINK, REDALYC and PROQUEST. Using rigorous and delimiting guidelines where journals from the year 2017-2023 were used, the searches were carried out in Spanish as well as in English. This research shows that the combination of Lean Office and Artificial Intelligence can reduce costs and optimize processes, making it an effective strategy to address the existing challenges in Peru's public hospitals, potentially resulting in more efficient and higher-quality healthcare for patients.
References
1. Pacanowski, T. G., Aguerrebere, P. M., Medina, E., & López-Molina, P. (2021). Optimización de la comunicación hospitalaria en redes sociales: Análisis y estrategias de engagement. Hipertext. net, (22), 63-74. https://hdl.handle.net/11441/116569
2. Sánchez Suárez, Y. (2023). Instrumento metodológico para la gestión de flujos de pacientes de instituciones hospitalaria (Doctoral dissertation, Universidad de Matanzas. Facultad de Ciencias Técnicas).
http://rein.umcc.cu/handle/123456789/1949
3. Medina Ahumada, Patricia. Aplicaciones de la inteligencia artificial en la gerencia en salud, una revisión de alcance. 2023.
https://repositorio.fucsalud.edu.co/handle/001/3360
4. Murcia Melchor, F. (2017). Estandarización de los procedimientos del área de gestión de suministros e insumos para el Hospital local Santa Cruz ESE de Trujillo Valle del Cauca (Bachelor's thesis, Ingeniería Industrial).
http://hdl.handle.net/20.500.12993/3572
5. Vidal, J. R., & Vidal, O. R. (2022). Aplicaciones de la inteligencia artificial en la medicina. Revista Peruana de investigación en salud, 6(3), 131-133.
https://dialnet.unirioja.es/descarga/articulo/8672828.pdf
6. Joison, A. N., Barcudi, R. J., Majul, E. A., Ruffino, S. A., De Mateo Rey, J. J., Joison, A. M., & Baiardi, G. (2021). La inteligencia artificial en la educación médica y la predicción en salud. Methodo Investigación Aplicada a las Ciencias Biológicas, 6(1).
https://doi.org/10.22529/me.2021.6(1)07
7. Pérez, M. A. L. (2018). Tecnología de la salud, Universidad innovadora. Revista Cubana de Tecnología de la Salud, 9(1), 1-2. http://revtecnologia.sld.cu/index.php/tec/article/view/1075
8. Basáez, E., & Mora, J. (2022). Salud e inteligencia artificial: ¿cómo hemos evolucionado? Revista Médica Clínica Las Condes, 33(6), 556-561. https://www.sciencedirect.com/science/article/pii/S0716864022001262
9. Locher, D. (2017). Lean office: Metodología Lean en servicios generales, comerciales y administrativos. Profit Editorial. https://books.google.es/books?hl=es&lr=&id=W5UUDgAAQBAJ&oi=fnd&pg=PT8&dq=lean+office+en+la+salud&ots=rTTAiR3CCn&sig=Dh16XhyHU75xaEV7u2grLHA3iOg
10. Rojas Sánchez, P. A., & Zamora Malpartida, M. J. (2021). Lean Office para la mejora de la estrategia de Sampling del equipo de visita médica en una empresa de consumo masivo de alimentos infantiles. https://hdl.handle.net/20.500.14138/5005

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2025 Yasmi Fiorella Ccahuana Ninavilca, Williams Fernando Rivera Torcillas, Oshin Silva Sánchez
