Abstract
This paper evaluates a Machine Learning model developed using the CSKT methodology to improve pension allocation in engineering projects. It addresses the challenges in adopting such models by following a structured approach from understanding the business model to presenting it. The initial decision tree model training phase yields an F1-Score of 0.699825, indicating balanced precision and recall. Individual precision is 0.650974, and recall is 0.756603, demonstrating accurate prediction of positive outcomes. The ROC curve has a value of 0.739770, assessing the discriminatory ability of the model. The results include defining the model parameters, creating a decision tree, and performing initial simulations. The conclusion highlights CSKT's effectiveness in pension allocation and the stresses of ongoing client collaboration in engineering projects. The numerical results highlight the model's contribution to improving pension allocation processes in engineering projects.
References
1. Editorial (2021). Ageism: half of those over 40 have felt disadvantaged by their age in a hiring process. RRHH Digital.https://www.rrhhdigital.com/secciones/seleccion/150135/Edadismo-la-mitad-de-los-mayores-de-40-se-ha-sentido-en-desventaja-por-su-edad-en-un-proceso-de-contratacion/, accessed on 13 Feb. 2024.
2. Management. (2023). Demand for security personnel will increase 18% due to the end-of-year campaign. Management.https://gestion.pe/economia/empresas/demanda-de-personal-de-seguridad-aumentara-18-por-campana-de-fin-de-ano-noticia/
3. W. Sanguineti Raymond, The employment contract in the face of economic, social and productive transformations. Peru: El Buhó E.I.R.L., 2016. http://trabajodigno.pe/wp-content/uploads/2016/02/Los-contratos-de-trabajo-de-duraci%C3%B3n-determinada.pdf
4. Zafeiriadou, A. (2021). Candidates’ reaction on the modern methods of personnel selection processes and the influence of word-of-mouth on employer branding. https://repository.ihu.edu.gr/xmlui/bitstream/handle/11544/29891/a.zafeiriadou_mng_23-06-2021.pdf?sequence=1
5. Campesato, O. (2020). Artificial intelligence, machine learning, and deep learning. https://styluspub.presswarehouse.com/browse/book/9781683924678/Artificial-Intelligence-Machine-Learning-and-Deep-Learning.
6. Chinnamgari, S.K. (2019). R Machine Learning Projects: Implement supervised, unsupervised, and reinforcement learning techniques using R 3.5. https://search.worldcat.org/es/title/R-Machine-Learning-Projects-:-Implement-Supervised-Unsupervised-and-Reinforcement-Learning-Techniques-Using-R-3.-5/oclc/1083465396
7. Greener, J.G., Kandathil, S.M., Moffat, L., Jones, D.T. (2022). A guide to machine learning for biologists. Nature Reviews. Molecular Cell Biology, 23, 40-55. https://doi.org/10.1038/s41580-021-00407-0
8. Hart, G., Mueller, T., Toher, C., Curtarolo, S. (2021). Machine learning for alloys. Nature Reviews. Materials, 6(8): 730-755. https://doi.org/10.1038/s41578-021-00340-w
9. Janiesch, C., Zschech, P., Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3): 685-695. https://doi.org/10.1007/s12525-021-00475-2
10. Nasiriany, S., Thomas, G., Wang, W., Yang, A., Listgarten, J., & Sahai, A. (2019). A comprehensive guide to machine learning. Department of Electrical Engineering and Computer Sciences University of California, Berkeley. https://sourestdeeds.github.io/pdf/intro-to-ml-berkeley.pdf
11. Mahesh, B. (2020). Machine learning algorithms - A review. International Journal of Science and Research (IJSR), 9: 381-386. https://doi.org/10.21275/art20203995
12. Bozzi, M.E. (2023). Machine learning models applied to the estimation of the probability of default of banks in the Argentinean banking system. University of San Andrés. http://hdl.handle.net/10908/23089
13. González, P., Andrés, G. (2021). Detection of fraudulent credit card transactions using Machine Learning models. Universidad de los Andes. http://hdl.handle.net/1992/53571
14. Borja-Robalino, R., Monleon-Getino, A., Rodellar, J. (2020). Standardisation of performance metrics for Machine and Deep Learning classifiers. Revista Ibérica de Sistemas e Tecnologias de Informação, E30: 184–196. https://www.researchgate.net/profile/Antonio-Monleon-Getino/publication/342009715_Estandarizacion_de_metricas_de_rendimiento_para_clasificadores_Machine_y_Deep_Learning/links/5ede3d0392851cf13869078e/Estandarizacion-de-metricas-de-rendimiento-para-clasificadores-Machine-y-Deep-Learning.pdf
15. Ogosi Auqui, J.A., Camargo, J.L., Vera Tito, F.S. (2022). New CSKT methodology to improve Machine Learning implementation projects in Industrial Engineering. http://45.5.56.102/bitstream/123456789/181/1/Nueva%20metodolog%C3%ADa%20CSKT%20para%20mejorar%20los%20proyectos%20de%20implementaci%C3%B3n%20de%20Machine%20Learning%20en%20Ingenier%C3%ADa%20Industrial.pdf
16. Pisner, D.A., Schnyer, D.M. (2020). Support vector machine. Machine learning, 101-121. https://doi.org/10.1016/B978-0-12-815739-8.00006-7
17. Hidayati, N., Hermawan, A. (2021). K-Nearest Neighbor (K-NN) algorithm with Euclidean and Manhattan in classification of student graduation. Journal of Engineering and Applied Technology, 2(2): 86-91. http://dx.doi.org/10.21831/jeatech.v2i2.42777
18. Blanquero, R., Carrizosa, E., Ramírez-Cobo, P., Sillero-Denamiel, M.R. (2021). Variable selection for Naïve Bayes classification. Computers & Operations Research, 135: 105456. https://doi.org/10.1016/j.cor.2021.105456
19. Sinaga, K.P., Yang, M.S. (2020). Unsupervised K-means clustering algorithm. IEEE access, 8, 80716-80727. https://doi.org/10.1109/ACCESS.2020.2988796
20. Blockeel, H., Devos, L., Blockeel, B., Nanfack, G., Nijssen, S. (2023). Decision trees: From efficient prediction to responsible AI. Frontiers in Artificial Intelligence, 6. https://doi.org/10.3389/frai.2023.112455

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2024 José A. Ogosi Auqui