Journal of Scientific and Technological Research Industrial - ISSNe: 2961-211X

Optimization of biodegradable trays with residual potato starch (Solanum tuberosum) and passion fruit waste flour (Passiflora edulis) by thermoforming
New Submissions
PDF (Spanish)
HTML (Spanish)

Keywords

potato starch
agro-industrial waste
biodegradability
thermoforming
sustainable packaging

How to Cite

Optimization of biodegradable trays with residual potato starch (Solanum tuberosum) and passion fruit waste flour (Passiflora edulis) by thermoforming. (2025). Journal of Scientific and Technological Research Industrial, 6(2), 23-34. https://doi.org/10.47422/jstri.v6i2.66

Abstract

The objective of this research was to optimize the formulation of biodegradable trays made from residual potato starch (Solanum tuberosum) and passion fruit residue flour (Passiflora edulis) using thermoforming. The study, with a hypothetical-deductive approach, basic design, cross-sectional scope, and explanatory level, applied a mixture design methodology with 15 experimental runs. The sample consisted of 5 kg of potato starch and 5 kg of passion fruit flour. Statistical analysis was performed with Design Expert 13 using ANOVA and numerical optimization, while graphical representation was carried out with Statistica 10. The results indicated an optimal formulation composed of 45.1% starch, 5.3% passion fruit flour, and 49.7% water, achieving high hardness, low fracturability, and adequate physical properties. Quadratic and linear models showed high reliability (R² > 0.90). It is concluded that the combination of residual potato starch and passion fruit flour allows the production of biodegradable trays with satisfactory mechanical and functional properties, representing a viable and sustainable alternative to conventional plastic packaging.

PDF (Spanish)
HTML (Spanish)

References

Aguirre, E., Domínguez, J., Villanueva, E., Ponce-Ramírez, J. A., Arévalo-Oliva, M. de F., Siche, R., González-Cabeza, J., & Rodríguez, G. (2023). Biodegradable trays based on Manihot esculenta Crantz starch and Zea mays husk flour. Food Packaging and Shelf Life, 38, 101129. https://doi.org/10.1016/j.fpsl.2023.101129

Aguirre, E., Domínguez, J., Villanueva, E., Ponce-Ramírez, J. A., Arévalo-Oliva, M. de F., Siche, R., González-Cabeza, J., & Rodríguez, G. (2023). Biodegradable trays based on Manihot esculenta Crantz starch and Zea mays husk flour. Food Packaging and Shelf Life, 38, 101129. https://doi.org/10.1016/j.fpsl.2023.101129

Ambigaipalan, P., Hoover, R., Donner, E., & Liu, Q. (2019). Starch characteristics and properties of potato varieties. Carbohydrate Polymers, 211, 304–313. https://doi.org/10.1016/j.carbpol.2019.02.081

Andrady, A. L. (2017). The plastic in microplastics: A review. Marine Pollution Bulletin, 119(1), 12–22. https://doi.org/10.1016/j.marpolbul.2017.01.082

Bergel, BF, da Luz, LM y Santana, RMC (2017). Estudio comparativo de la influencia del quitosano como recubrimiento de espuma termoplástica de almidón de papa, yuca y maíz. Prog Org Coat , 106 , 27-32. https://doi.org/10.1016/j.porgcoat.2017.02.010

Cazón, P., Vázquez, M., & Velazquez, G. (2017). Biodegradable films based on starch and cellulose nanocrystals for food packaging applications. Food Hydrocolloids, 77, 51–61. https://doi.org/10.1016/j.foodhyd.2017.09.003

Chauhan, V., Jaiswal, A. K., & Jaiswal, S. (2021). Nutritional composition and bioactive compounds of passion fruit peel: A review. Journal of Food Science and Technology, 58(9), 3293–3302. https://doi.org/10.1007/s13197-020-04855-3

Cruz-Tirado, J. P., Vejarano, R., Tapia-Blácido, D. R., Barraza-Jáuregui, G., & Siche, R. (2019). Biodegradable foam tray based on starches isolated from different Peruvian species. International Journal of Biological Macromolecules, 125, 800–807. https://doi.org/10.1016/j.ijbiomac.2018.12.111

Demirel, B. (2017). Biodegradación de bioplásticos en entornos naturales. Waste Management, 59 , 526-536. https://doi.org/10.1016/j.wasman.2016.10.006

Ferreira, D. C. M., Molina, G., & Pelissari, F. M. (2020). Biodegradable trays based on cassava starch blended with agroindustrial residues. Composites Part B: Engineering, 183, 107682. https://doi.org/10.1016/j.compositesb.2019.107682

Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782

Hernández, J., Silva, C., & Paredes, J. (2020). Dietary fiber and functional properties of passion fruit peel. Journal of Food Processing and Preservation, 44(7), e14456. https://doi.org/10.1111/jfpp.14456

Jiménez, G. A., Miranda, B., & Moya, G. (2024). Producción de plástico biodegradable a base de almidón de yuca mediante formulación con plastificantes. Revista Ingeniería de Materiales, 18(1), 23-34. https://doi.org/10.15517/ri.v35i1.59540

Li, S., Wang, Y., Xu, W. y Shi, B. (2020). Elastómero a base de caucho natural reforzado con fibras de colágeno de cuero multiescala modificadas químicamente con excelente tenacidad. ACS Sustainable Chemistry & Engineering, 8(13), 5091-5099. https://doi.org/10.1021/acssuschemeng.9b07078

Machado, C. M., Benelli, P., & Tessaro, I. C. (2020). Study of interactions between cassava starch and peanut skin on biodegradable foams. International Journal of Biological Macromolecules, 147, 1343–1353. https://doi.org/10.1016/j.ijbiomac.2019.10.098

Mello, L. R. P. F., & Mali, S. (2014). Use of malt bagasse to produce biodegradable baked foams made from cassava starch. Industrial Crops and Products, 55, 187–193. https://doi.org/10.1016/j.indcrop.2014.02.015

Müller, G. A., Asthana, A., & Rubin, S. M. (2022). Structure and function of MuvB complexes. Oncogene, 41(21), 2909–2919. https://doi.org/10.1038/s41388-022-02321-x

Nurazzi, N. M., Asyraf, M. R. M., Khalina, A., Abdullah, N., Sabaruddin, F. A., Aisyah, H. A., ... & Lee, C. H. (2021). Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A Review on Influence of Chemical Treatments. Polymers, 13(16), 2710. https://doi.org/10.3390/polym13162710

Ochoa-Yepes, O., Di Giogio, L., Goyanes, S., Mauri, A., & Famá, L. (2019). Influence of processing (extrusion/thermocompression, casting) and lentil protein content on the physicochemical properties of starch films. Carbohydrate Polymers, 208, 221–231. https://doi.org/10.1016/j.carbpol.2018.12.030

Ovando-Martínez, M., Bello-Pérez, L., & Agama-Acevedo, E. (2021). Propiedades fisicoquímicas de almidones nativos de tubérculos. Journal of Applied Polymer Science, 138(12), 502–512.

Pereda, M., Amica, G., & Marcovich, N. E. (2011). Development and characterization of starch–based biocomposites reinforced with natural fibers. Carbohydrate Polymers, 86(1), 329–336. https://doi.org/10.1016/j.carbpol.2011.04.044

Pereda, M., Amica, G., & Marcovich, N. E. (2011). Development and characterization of starch–based biocomposites reinforced with natural fibers. Carbohydrate Polymers, 86(1), 329–336. https://doi.org/10.1016/j.carbpol.2011.04.044

Ribeiro, D. S., dos Santos, J. A. B., & de Carvalho, R. A. (2021). Biodegradable films and coatings based on starch: State of the art and future perspectives. Polysaccharides, 2(1), 10–31. https://doi.org/10.3390/polysaccharides2010002

Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2021). Development and characterization of biodegradable starch-based composite films reinforced with sugar palm fibres. Food Packaging and Shelf Life, 28, 100639. https://doi.org/10.1016/j.fpsl.2021.100639

Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2021). Development and characterization of biodegradable starch-based composite films reinforced with sugar palm fibres. Food Packaging and Shelf Life, 28, 100639. https://doi.org/10.1016/j.fpsl.2021.100639

Shafiei, F. et alii. (2021). Fracture resistance of endodontically treated premolars restored with bulk-fill composite resins: The effect of fiber reinforcement, Dental Research Journal, 18(60), pp. 1-8.

Shen, M., Zeng, Z., Song, B., Yi, H., Hu, T., Zhang, Y., & Chen, M. (2023). Microplastics in the food chain: A review on potential health risks. Science of the Total Environment, 865, 161075. https://doi.org/10.1016/j.scitotenv.2023.161075

Souza, F., Almeida, J., & Santos, L. (2021). Structural and thermal properties of passion fruit peel flour. International Journal of Food Properties, 24(1), 1123–1135. https://doi.org/10.1080/10942912.2021.1923342

V& Chen, M. (2023). Microplastics in the food chain: A review on potential health risks. Science of the Total Environment, 865, 161075. https://doi.org/10.1016/j.scitotenv.2023.161075

Yildiz, G., Tulay, E., & Turhan, K. N. (2022). Recent advances in starch-based biodegradable materials for food packaging. Carbohydrate Polymers, 291, 119592. https://doi.org/10.1016/j.carbpol.2022.119592

Zhang, B., Li, X., & Xie, F. (2020). Recent advances in starch-based composites reinforced with plant-derived fibers: Structure, properties and applications. Carbohydrate Polymers, 239, 116230. https://doi.org/10.1016/j.carbpol.2020.116230

Zhang, B., Li, X., & Xie, F. (2020). Recent advances in starch-based composites reinforced with plant-derived fibers: Structure, properties and applications. Carbohydrate Polymers, 239, 116230. https://doi.org/10.1016/j.carbpol.2020.116230

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Any Córdova-Chang, Elza Berta Aguirre Vargas

Downloads

Download data is not yet available.