Journal of Scientific and Technological Research Industrial - ISSNe: 2961-211X

Determination of the enzymatic activity and the percentage of PPO inhibition in the carom sheets post-treated by blanching and osmodehydration
New Submissions
PDF (Spanish)
HTML (Spanish)

Keywords

Polyphenol oxidase (PPO)
Blanching
Osmodehydration
Star fruit
Enzyme stability

How to Cite

Determination of the enzymatic activity and the percentage of PPO inhibition in the carom sheets post-treated by blanching and osmodehydration. (2025). Journal of Scientific and Technological Research Industrial, 6(1), 17-24. https://doi.org/10.47422/jstri.v6i1.57

Abstract

This study evaluates the enzymatic activity and the percentage of PPO Inhibition in starfruit slices treated with blanching and osmodehydration to improve their stability and quality. The research was carried out, applying a 2k factorial experimental design with two main factors: blanching time (10 and 30 seconds) and sucrose concentration (50 and 60 °Brix).

The results showed that blanching time has a significant impact on the reduction of PPO enzymatic activity, with the 30-second treatment being more effective. On the other hand, sucrose concentration showed a minor influence, although it contributed to the variability of the data. The optimal treatment for PPO inhibition reached 82.76% with prolonged blanching and an intermediate concentration of sucrose. This shows that blanching is crucial to control enzymatic browning, while osmodehydration complements the process by limiting the availability of water for enzymatic action. It is concluded that the combination of thermal and osmotic treatments allows improving the physicochemical quality and enzymatic stability of the processed star fruit, suggesting the optimization of these variables for their application in derived products.

PDF (Spanish)
HTML (Spanish)

References

1. Arrazola-Paternina, G., Alvis-Bermúdez, A., & García-Mogollon, C. (2016). Efecto del tratamiento de escaldado sobre la actividad enzimática de la polifenoloxidasa en dos variedades de batata (Ipomoea batatas Lam.). Revista Colombiana de Ciencias Hortícolas, 10(1). https://doi.org/10.17584/rcch.2016v10i1.5125

2. Barman, N., & Badwaik, L. S. (2017). Effect of ultrasound and centrifugal force on carambola (Averrhoa carambola L.) slices during osmotic dehydration. Ultrasonics Sonochemistry, 34. https://doi.org/10.1016/j.ultsonch.2016.05.014

3. Burga Muñoz, K. M. (2021). Estudio Comparativo de Dos Métodos de Inactivación de Polifenol Oxidasa en Rodajas de Yacón. Universidad Nacional Autónoma de Chota.

4. CEPAL. (2023). Economic survey of Latin America and the Caribbean : financing a sustainable transition investment for growth and climate change action.

5. Chen, X., Lu, J., Li, X., Wang, Y., Miao, J., Mao, X., Zhao, C., & Gao, W. (2017). Effect of blanching and drying temperatures on starch-related physicochemical properties, bioactive components and antioxidant activities of yam flours. LWT, 82. https://doi.org/10.1016/j.lwt.2017.04.058

6. FAO. (2024). Principales Frutas Tropicales. Análisis del mercado Resultados preliminares 2023.

7. Luan, F., Peng, L., Lei, Z., Jia, X., Zou, J., Yang, Y., He, X., & Zeng, N. (2021). Traditional Uses, Phytochemical Constituents and Pharmacological Properties of Averrhoa carambola L.: A Review. Frontiers in Pharmacology, 12. https://doi.org/10.3389/FPHAR.2021.699899/PDF

8. Martinez, J., Calero, A., Ayala, A., Chiralt, A., & Fito, P. (2003). Efecto del escaldado sobre la deshidratación osmótica del mango. Ingenería y Competitividad, 27–33.

9. Mehta, S. D. H. (2023). Challenges of Star Fruit Averrhoa carambola: A Comprehensive Overview. International Journal of Science and Research (IJSR), 12(8), 2132–2135. https://doi.org/10.21275/SR23823113638

10. Nicoli, M. C., Elizalde, B. E., Pitotti, A., & Lerici, C. R. (1991). Effect of sugars and maillard reaction products on polyphenol oxidase and peroxidase activity in food. Journal of Food Biochemistry, 15(3). https://doi.org/10.1111/j.1745-4514.1991.tb00153.x

11. Pérez-Tello, G. O., Silva-Espinoza, B. A., Vargas-Arispuro, I., Briceño-Torres, B. O., & Martinez-Tellez, M. A. (2001). Effect of temperature on enzymatic and physiological factors related to chilling injury in carambola fruit (Averrhoa carambola L.). Biochemical and Biophysical Research Communications, 287(4). https://doi.org/10.1006/bbrc.2001.5670

12. Petruzzi, L., Campaniello, D., Speranza, B., Corbo, M. R., Sinigaglia, M., & Bevilacqua, A. (2017). Thermal Treatments for Fruit and Vegetable Juices and Beverages: A Literature Overview. Comprehensive Reviews in Food Science and Food Safety, 16(4). https://doi.org/10.1111/1541-4337.12270

13. Pucuhuayla Cruz, E. R., & Valdivieso Tomas, M. N. (2018). Efecto del osmodeshidratado y secado por aire caliente sobre la capacidad antioxidante, B-carotenos, cinética y rehidratación en el liofilizado de carambola. Universidad Nacional del Centro del Perú.

14. Quiles, A., Hernando, I., Pérez-Munuera, I., Larrea, V., Llorca, E., & Lluch, M. Á. (2005). Polyphenoloxidase (PPO) activity and osmotic dehydration in Granny Smith apple. Journal of the Science of Food and Agriculture, 85(6). https://doi.org/10.1002/jsfa.2062

15. Teixeira, G. H. A., Durigan, J. F., Alves, R. E., & O’Hare, T. J. (2007). Use of modified atmosphere to extend shelf life of fresh-cut carambola (Averrhoa carambola L. cv. Fwang Tung). Postharvest Biology and Technology, 44(1). https://doi.org/10.1016/j.postharvbio.2006.11.007

16. Teixeira, G. H. A., Durigan, J. F., Ferraudo, A. S., Alves, R. E., & O’Hare, T. J. (2012). Multivariate analysis of fresh-cut carambola slices stored under different temperatures. Postharvest Biology and Technology, 63(1). https://doi.org/10.1016/j.postharvbio.2011.09.005

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Gina De La Cruz Calderón , Elza Berta Aguirre Vargas